Schneider Electric Handbook for Solar Installers

IEC Standards for Australia

Solar products and tech notes for residential and commercial applications

solar.schneider-electric.com
When it comes to grid-tie, off-grid and backup power residential and commercial solar systems, Schneider Electric has both the experience and the proven technology to help make your investment a success.

Schneider Electric solutions for residential and commercial installations are specially designed by keeping your needs in mind. Our balance-of-system solutions include everything you need to efficiently distribute and manage locally generated solar energy, from the DC output to the AC grid connection.

Bankability, Connectivity, Service and Support
Why choose Schneider Electric's solar products and solutions?

- Trusted brand for over 180 years
- Designed for reliability
- Flexibility
- Schneider Electric’s ecosystem of products and solutions
- Long-term, trusted service partner
- IoT enabled solutions for Smart Homes and Buildings
Our inverter / chargers manage power conversion and battery charging. Conext™ XW+ and SW are suitable for grid-tie solar with storage, backup power, self-consumption, and off-grid power for homes, small businesses, and remote communities.

Residential applications

Residential grid-tie solar with battery backup
Residential self-consumption with storage
Residential off-grid
Residential backup power

Commercial applications

Commercial rooftop solar for self-consumption with storage
Commercial backup power
Commercial off-grid
Microgrids

Telecom towers
Hybrid inverter / charger systems

Conext™ XW+

Conext™ XW+ is an adaptable single-phase and three-phase hybrid inverter with grid-tie functionality and dual AC power inputs.

From a single unit to clusters up to 76.5 kW, the Conext™ XW+ is a scalable system. The Schneider Electric Conext™ XW+ system is suitable for grid-interactive and off-grid, residential and commercial, solar and backup power applications.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 865-8548-61 | XW+ 8.5 kW 230V | • Supports single-phase and stackable three-phase operations
• 8500 W output power (30 min) at 25°C
• 12000 W overload 60 sec
• 140 A maximum output charge current
• 48 VDC nominal battery voltage |

Conext™ XW+ Dred Tool for Australia

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-1170</td>
<td>XW+ Dred Tool</td>
<td>• The dred tool allows utility control of inverter. Only needed for Australia market</td>
</tr>
</tbody>
</table>
Conext™ SW

Conext™ SW is a pure sine wave, hybrid inverter system with switchable 50/60 Hz frequencies, providing power for every need.

The Conext™ SW is a proven hybrid inverter/charger for off-grid, backup power and self-consumption applications for homes and small businesses.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 865-4024-55 | SW 4024 230V | • 4000 W overload 30 min
• 7000 W overload 5 sec
• 90 A maximum output charge current
• 24 VDC nominal battery voltage |
| 865-4048-55 | SW 4048 230V | • 4400 W overload 30 min
• 7000 W overload 5 sec
• 45 A maximum output charge current
• 48 VDC nominal battery voltage |
More resources are available online

Product information (datasheets, manuals, technical documents and firmware)

2. Look for your product under the Product menu.
3. The Downloads section offers product documentations.

Find Authorized Distributors

Visit SEsolar.com/distributors to find the Schneider Electric authorized distributors in your country.
Introducing the powerful local and remote monitoring solution for battery-based and grid-tie solar systems. The Conext™ Gateway together with Conext™ Insight 2 will bring system monitoring and remote management to the cloud.

Residential applications
- Residential grid-tie solar with battery backup
- Residential self-consumption with storage
- Residential off-grid
- Residential backup power

Commercial applications
- Rooftop for feed-in-tariff / net metering
- Commercial rooftop solar for self-consumption with storage
- PV-Diesel hybridization
- Commercial backup power
- Commercial off-grid
- Microgrids
- Telecom towers
Conext™ Insight 2

The Conext™ Insight 2 is a cloud-based platform for end users and installers to remain connected to and manage a portfolio of customer sites. It is a simple tool for users to track their system performance locally and remotely.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Easily analyze your energy use and production</td>
</tr>
<tr>
<td>• Optimize your operations with powerful remote troubleshooting</td>
</tr>
<tr>
<td>• Minimize truck rolls and reduce installers travel expenses</td>
</tr>
<tr>
<td>• Configure your key operating parameters to extend equipment life</td>
</tr>
<tr>
<td>• Monitor and analyze a single site or your complete portfolio of sites</td>
</tr>
<tr>
<td>• Drill-down from a multi-sites overview to the detailed diagnosis of specific equipment on site</td>
</tr>
<tr>
<td>• Manage data of all key installed devices from a single login</td>
</tr>
</tbody>
</table>

Conext™ Gateway

The new Conext™ Gateway provides local system configuration and management as well as live system monitoring for the residential and commercial solar and battery applications.

The Conext™ Gateway together with Conext™ Insight 2 will bring system monitoring and remote management to the cloud.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 865-0329 | Conext™ Gateway | • Compatible with XW+, SW and Conext™ accessories
| | | • Supports Xanbus, Canbus, and Modbus for connectivity to range of SE solar products
| | | • Supports Wi-Fi and Ethernet for easy connectivity |

Compatible with our hybrid inverter systems

Our monitoring solutions are compatible with the following inverter / chargers:

✓ Conext™ XW+ inverter / charger
✓ Conext™ SW inverter / charger
We offer broad range of balance of systems that are compatible with our storage inverter / chargers and monitoring solutions.

Leverage Schneider Electric's ecosystem of products and solutions.

Residential applications

- Residential grid-tie solar with battery backup
- Residential off-grid
- Residential self-consumption with storage
- Residential backup power

Commercial applications

- Commercial rooftop solar for self-consumption with storage
- Commercial off-grid
- Commercial backup power
- Microgrids
- Telecom towers
Power Distribution Panels (PDP) and Charge Controllers

PDP accessory for XW+ systems

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-1025-01</td>
<td>Conext™ XW Conduit Box</td>
<td>• PDP accessory for connecting to XW+ inverter / chargers and PDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wiring accessories not included</td>
</tr>
</tbody>
</table>

Battery fuse combiner box for XW+ systems

The Conext™ Battery Fuse Combiner Box combines XW+ inverter / chargers with one battery bank using a single battery pole disconnect method and provides fuse protection for cables, batteries and inverter / chargers.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-1031-01</td>
<td>Conext™ Battery Fuse Disconnect Box for 250A DC Fuses</td>
<td>Combines up to three XW+ inverter / chargers with one battery bank</td>
</tr>
<tr>
<td>865-1030-01</td>
<td>Conext™ Battery Fuse Disconnect Box for 160 A DC Fuses</td>
<td>Combines up to three XW+ inverter / chargers with one battery bank</td>
</tr>
</tbody>
</table>

Conext™ MPPT charge controller solutions

Conext™ MPPT charge controllers are used for DC Coupled systems.

The Conext™ MPPT charge controllers provide maximum power point tracking of PV arrays to optimize solar energy harvest while regulating the battery charge. When combined with the Conext™ XW and SW series inverters, surplus power is used to power AC loads. The MPPT 80 600 is rated for 600 V PV strings, helping to reduce balance of system costs.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-1030-1</td>
<td>Conext™ MPPT 60 150 Charge Controller</td>
<td>• 3500 W maximum output power (at nominal 48 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 12, 24, 36, 48, 60 V nominal battery voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 150 V max. PV array open circuit voltage including temperature correction factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compatible with XW+ and SW</td>
</tr>
<tr>
<td>865-1032</td>
<td>Conext™ MPPT 80 600 Charge Controller</td>
<td>• 4800 W maximum output power (at nominal 48 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 24 and 48 V (nominal battery voltage (default is 48 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 600 V max. PV array open circuit voltage including temperature correction factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compatible with XW+ and SW</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **865-1155-01** | Conext™ Configuration Tool | • PC-based software tool to simplify system configuration and reduce installation time
• Compatible with XW+, and SW, as well as MPPT charge controllers |
| **865-1050-01** | Conext™ System Control Panel (SCP) | • Control panel to set up and monitor the Conext inverter charger system,
• Compatible with XW+, and SW, as well as MPPT charge controllers |
| **865-1060-01** | Conext™ Automatic Generator Start (AGS) | • Automatically activate or stop a generator in response to changing power requirements,
• Compatible with XW+, and SW, as well as MPPT charge controllers |
| **865-1080-01** | Conext™ Battery Monitor | • Indicates hours of battery based runtime and determines battery bank state of charge.
• Compatible with XW+ and SW, as well as MPPT charge controllers |
Benefits of Conext™ SW / XW+ Enhanced Grid Support feature

Summary: Schneider Electric's Conext™ SW / XW+ Battery Inverter products are designed for maximum flexibility and can be integrated with PV generators on the AC output (Load side) or DC side (Battery side). These two methods of connecting PV generators and storage inverters are commonly referred to as AC and DC coupling respectively. Conext™ battery inverters support both methods of PV integration. For more on this application, see our Tech note on AC & DC Coupling.

Enhanced Grid Support is Schneider Electric's proprietary control algorithm for energy management and is based on Schneider's patent US8076907B2.

This feature is designed to maximize energy storage when DC coupling is used with Schneider Electric's Conext™ products family of battery inverters and charge controllers. The feature requires communication between the battery inverter and DC charge controller and therefore only works with Schneider's Conext™ range of products.

Enhanced Grid Support (EGS) applies to grid connected systems, for applications where the battery inverter is used for back-up or to maximize self-consumption. When EGS is active, the battery inverter and charge controller interact continuously during Bulk, Absorption and Float stages of charging. Through the charging stages, the system intelligently exports the excess PV power not stored by the battery, while adjusting to the charge voltage settings of the charge controller.
Why is unique about this?

1. The Charge controller(s) are able to execute a full two or three stage charge cycle, to optimally charge the battery. This allows the battery to be charged at a charging voltage associated with each charge stage (Bulk, Absorption, Float) and efficiently returns the battery to a full state of charge. For flooded batteries, the elevated battery voltage during Absorption stage promotes agitation of electrolyte which reduces stratification of the acid.

2. In most other DC coupled systems, a fixed voltage is used to regulate battery charging and excess PV export. The fixed charging voltage is likely to result in partial state of charge of the battery and could degrade battery performance over time.
Just like Smart Charge for AC Coupled systems, Enhanced Grid Support is designed to maximize and prioritize storage loads. The value of this feature is that the stored energy can be used later when rates are higher (Time-of-Use). Or in applications where the grid is intermittent, EGS prioritizes storage of your PV production to maximize readiness for potential grid outage.

NOTE: Enhanced Grid Support is not compatible with lithium-ion batteries with BMS integration due to the need for closed loop control communication with BMS in the lithium-based battery. To achieve Enhanced Grid Support functionally with BMS integration, a Conext™ Gateway needs to be installed in the system.

For more information on enhanced grid support feature, refer to respective product manuals.
Using Lithium-ion & Advanced Batteries with Conext™ Series of Inverter / Chargers & Charge Controllers

Summary: Lithium-ion batteries continue to increase in popularity due to improved affordability, superior cycle life and longevity compared to traditional lead acid batteries. However, Lithium batteries require controlled charging and discharging for optimal and safe operation which necessitates changes to traditional battery charging algorithms to adapt to the chemistry's sensitivities. Conext™ inverter / chargers now support operation with lithium batteries to increase your options for storage technology.

The Conext™ XW, SW and MPPT charge controller family of products can be used with Smart Lithium-ion Batteries. Smart batteries have an internal Battery Management System (BMS) that monitors critical internal parameters and determines safe charging or discharging parameters.

The Conext™ Gateway retrieves the relevant charging and discharging parameters from the battery BMS and intelligently controls operation of the Conext™ inverter and charge controller system accordingly. This type of control is known as closed loop control and allows the Conext™ system to adapt to battery BMS operating limits, warnings and in real time. It is also possible to use your Conext™ product with Lithium batteries that do not rely on communication with the inverter. Such lithium batteries are referred to as Lead Acid replacements.

For information on supported lithium battery models, please contact your battery manufacturer or Schneider Electric application engineers.
Benefits of Conext™ SW Smart Charge Feature

Summary: As utilities struggle with excess generation from distributed PV, a phenomenon commonly known as the “duck curve”, storage is becoming a key component of a long-term solution. Through incentive programs, end users are being encouraged to add storage and store excess PV during peak generation (mid-day) periods, for use during peak demand hours (early evening), e.g. Time-of-Use rates. For existing PV installations, this means adding storage as a retrofit. Smart charge facilitates easy time of use by automatically storing excess generation from your existing PV inverter system.

Smart Charge is Schneider Electric’s proprietary control algorithm and is based on Schneider Electric’s patent US9917446B2.

This feature is designed to maximize energy storage in AC coupled systems. The feature does not require any communication between the battery inverter and PV Inverter, and thus works with any brand of PV Inverter.

For the feature to work, the PV inverter must be installed downstream of the Conext™ battery inverter, or to the AC Output port of the inverter which would typically also connect to a critical load panel. This feature is used for grid connected systems, where the storage inverter is used for back-up or to maximize self-consumption.

When smart charge is active, the battery inverter monitors the flow of excess PV power produced by the PV inverter flowing in through the AC Load terminal and out to the grid port. The battery inverter intelligently captures the excess PV power and re-directs it to charge the battery. As the battery approaches full charge, excess PV power that cannot be stored by the battery is allowed to flow out to the inverter.
grid input port and support other loads in the home or for eventual export to the grid where allowed.

Just like Enhanced Grid Support for DC coupled systems, Smart Charge is intended to maximize and prioritize storage over non-critical loads in AC coupled systems. The added value of this feature is that the stored energy can be used later when rates are higher (Time-of-Use). In applications where the grid is intermittent, Smart Charge prioritizes storage of your excess PV production to maximize readiness for potential grid outage.

For more on Smart Charge feature, refer to the respective product manual.
Getting the most out of Conext™ XW+ Auxiliary Control Port

Summary: Schneider Electric’s Conext™ XW product line is designed for maximum flexibility. A useful feature is the Auxiliary port (Aux Port). This is a 5-position terminal block located at the lower right side of the inverter and is software configurable to perform several functions.

The Aux port can be used to control other devices based on certain conditions in the system. Some uses include the following applications.

1. Large installations using multiple inverters.
 - For large three phase systems with 3 or more inverters, the Aux port is used to control an external transfer or disconnect switch to switch the loads between the XW systems and an alternate AC source (grid or generator).
 - For stacked single phase systems, the port can be used to control an external load switch when loads in the system exceed 60A. This avoids damage to XW’s internal transfer relays when used with large loads in a stacked system.

2. Load shedding: Can be used to disconnect a non-critical load based on battery state of charge to prolong autonomy in back-up mode. An external relay is required.

3. Simple AGS control: Can be used to start/stop a two-wire generator based on battery voltage or State of Charge.

4. Battery Cabinet venting: Can be used to control a fan in a battery cabinet. Programmable to start the fan at a specific battery voltage or charge stage (e.g. bulk exit) and stop at completion of Absorption Phase.

5. Outdoor cabinet cooling fan: Can be used to activate a cabinet cooling fan based on internal temperature of the XW. This can be used if the XW is installed in a cabinet that is exposed to high ambient temperature but has a cabinet cooling fan.

6. Time of Use Load shedding: Can be used to disconnect non-critical loads in the home during a high tariff period (e.g. ToU).
Note: In each of the above applications, an appropriately rated external relay must be used to switch each respective load.

Example: External transfer and load shedding applications using XW+ Aux in a system.
The question of which of the two approaches is better has been debated at length among solar installers and system integrators. Each approach has its advantages and disadvantages which depend on the needs of an application. One analogy is that of vehicle propulsion options, front vs rear drive vs all-wheel drive. The choice depends on use case, e.g. whether for city driving or racing or off-road driving.

Here are some pros and cons of each approach:

AC Coupling

Pros:
- More efficient if loads coincide with PV generation (e.g. commercial building, offices).
- Easier to retrofit storage.

Cons:
- Lacks black start capability. (If battery inverter shuts down due to discharged battery and no PV, system will not recover when PV returns).
- There are constraints on AC coupled PV system sizing in comparison to the power rating of the battery inverters.
DC Coupling

Pros:

• More efficient if prioritizing storage of PV for later use (e.g. residential, off-grid communities)

• Battery inverter is sized to match the load.

• Supports black start. If the battery inverter shuts down due to discharged battery and no PV, the system automatically recovers through DC charging when PV returns).

Cons:

• PV inverter must be replaced with charge controller for retrofit systems.

• Less efficient if loads are coincident with PV generation.
Five Steps to Sizing The Solution You Need

Load Profile
Always start here. Understand how much power your system needs to provide at its highest point in demand and also understand how many kWh of power needs to be produced on a daily basis.

Also determine how much energy needs to be stored in kWh for night time usage daily.

Three things to determine:

- Max Load (kWp)
- Daily Energy (kWh)
- Daily Stored Energy (kWh)

Inverter sizing
Solar array sizing
Battery bank sizing

Inverter Sizing
Once the maximum instantaneous power of a given site is determined, we know what the peak power rating of our inverters should be.

It is also important to make sure that all the critical loads can be run for enough time. Be aware of the inverters capabilities over time and at different temperature ranges.
Solar Array Sizing
It is sized based on daily kWh and whether grid export is allowed. Decide AC coupling or DC coupling or both.

1. Size the array that will fulfill your daytime consumption requirements. For larger systems this will typically be installed on grid tied inverters (AC Coupled).
2. Size the array that will charge your batteries for night time usage. For most systems this will be installed on charge controllers (DC Coupled).

Battery Bank Sizing
Depending on the weather conditions where your installation is taking place, nighttime consumption of your system and the storage technology suited for you site, it is recommended that the battery bank be sized with a reasonable oversizing factor to ensure uninterrupted supply of power.

Battery bank sizing should take into account the system use case such as self-consumption or time-of-use rate optimization. It may as consider the household critical loads and desired number of hours of autonomy in case of a grid failure.

Back-up Power Sources
If you are installing a system in an area with extended periods of bad weather or very heavy loads that only run occasionally you may need to install a backup generator or get a grid connection to ensure that you have the excess power available.

Work closely with your installer to understand this, simply installing a generator for emergency or exceptional conditions can drastically reduce what you need to spend on your overall system.
Using Two Generators with The Conext™ XW+

Summary: The Conext™ XW+ multi-mode inverters offer a broad flexibility to accommodate your application needs. Some off-grid installations (e.g. remote hospitals, resorts, etc), use multiple energy sources to increase autonomy and maximize resiliency. One solution is the use of two generators to add redundancy.

The Conext™ XW is a perfect solution for redundant generator application. The two AC inputs on the XW can be used to manage the two AC sources. Two Conext™ AGSs will also have to be installed in the system to control the generators. To setup the system, stagger the following configuration settings:

- Select a primary generator and configure the start/stop triggers on the associated Conext™ AGS as appropriate.
- On the back up AGS, set the start/stop configuration settings slightly lower than on chosen for the primary AGS.

Once installed and configured, simply select the primary running generator by configuring the “AC source priority” parameter on the Master in the XW System. The primary generator will always start first since trigger settings are higher. If the primary generator does not start for any reason (e.g. out of fuel) the battery voltage or battery State of Charge (SoC) will continue to drop. Eventually the trigger conditions for the second AGS will be met and the back-up generator will start.
Li-ion Compatibility
Blue Planet Energy

Integration with Schneider Electric
Blue Planet Energy has megawatt-hours of fielded energy storage systems coupled with Schneider Electric Conext™ series inverter / chargers and solar charge controllers. These systems power grid-independent residences in off-grid and non-export energy markets, as well as commercial installations that provide business continuity, resilience, and financial savings. As part of an American Red Cross resilience project, Blue Planet Energy and Schneider Electric power more than 100 emergency shelters in schools located throughout Puerto Rico.

Blue Ion 2.0 integrates seamlessly with Schneider Electric power conversion equipment. The open-loop communication configuration requires a single voltage setpoint. Blue Ion’s high-power BMU optimizes battery charging down to the cell-pack level, while providing best-in-class online system performance monitoring. Together, Schneider Electric and Blue Planet Energy offer integrators a field-proven solution for durable, high-performance solar energy storage projects.

Product Highlights
Blue Ion 2.0 is precisely engineered to offer simple, fast, and repeatable design and installation. It offers the safety of Lithium Ferrous Phosphate (LFP), the confidence of a 15-year performance warranty, and the durability of 100% depth of discharge with no impact on cycle life. Every Blue Ion system you install is backed by the coolest and most experienced team in energy storage.

Listed to UL 9540, Blue Ion 2.0 is available with configurable energy capacities of 8 kWh, 12 kWh, and 16 kWh. Integrators can parallel units for a maximum system capacity of 448 kWh. Blue Ion 2.0 has a continuous power rating of 8 kW and surges to 10 kW for 30 minutes and 17 kW for one second. It supports AC- and DC-coupled system topologies as well as seamless integration with 3-phase services.
Discover AES LiFePO₄ Batteries

Integration with Schneider Electric
Discover AES LiFePO₄ batteries are built for demanding off-grid, whole home backup and microgrid applications. Discover AES batteries offer 1C continuous charge / discharge capabilities for the fastest recharge possible and support 3C peak output to handle in-rush and starting loads. They are field serviceable and have a 10-year replacement warranty. Each battery has an independent Battery Management System (BMS) that can be networked with up to 20 Discover AES batteries in parallel (133 kWh) and will communicate directly with the world’s leading hybrid inverter systems.

Discover AES batteries are Xanbus devices for easy, plug-and-play integration with Schneider Electric Conext™ series inverter / chargers or direct connection with the Conext™ Gateway. Closed-loop communication provides real-time battery data/status reporting over the Xanbus network and enables the internal BMS to automatically set, optimize and dynamically manage the charge and discharge configuration of Conext™ inverter / chargers. Dynamic charge control offers up to 25% improvement in 0% to 100% SoC recharge time compared to open loop control.

Product Highlights

Discover AES LiFePO₄ 6.65 kWh
- p/n 42-48-6650
- Useful 6.65 kWh (130 Ah) 100% DoD
- Nominal: 51.2 V
- Continuous Discharge / Charge: 130 A (each)
- Peak Current: 300 A (each)
- Communication: Xanbus, CAN, Modbus TCP / IP
- Parallel: Up to 20 batteries per network string
- IEC 62133, UL 1973, UN 38.3

Discover AES LiFePO₄ 2.8 kWh
- p/n 44-24-2800
- Useful 2.8 kWh (110 Ah) 100% DoD
- Nominal: 25.6 V
- Continuous Discharge / Charge: 110 A (each)
- Peak Current: 300 A (each)
- Communication: Xanbus, CAN, Modbus TCP / IP
- Parallel: Up to 20 batteries per network string
- IEC 62133, UL 1973, UN 38.3

This page in no way constitutes an endorsement, express or implied, of any product, service, or company.
Fortress Power

Integration with Schneider Electric
Fortress Power deploys self-managed Battery Management System (BMS) which can easily be integrated into Schneider Electric equipment. Using open loop control, the installer simply configures the battery charging and discharging parameters (high and low cut off voltage, max. charging and discharging current, etc.) via Conext™ System Control Panel.

The Fortress eVault 18.5 has CAN and RS 485 ports for communication.

Product Highlights
- eVault 18.5: 48V, 360AH, total energy 18.5kWh, max. 12 units in parallel for 222kWh; CAN/RS 485 communication
- LFP-10: 48V, 100AH, total energy 10 kWh, max 2 in parallel; no communication
- LFP-5K-48V: 48V, 100AH, total energy 5kWh, max 2 in parallel; no communication
- LFP-5K-24V: 24V, 200AH, total energy 5kWh, max 2 in parallel; no communication

Website
www.fortresspower.com

Contact
sales@fortresspower.com
Tel: +1 (877) 497 6937
Fax: +1 (267) 988 4219
SimpliPhi Power

Integration with Schneider Electric

SimpliPhi’s entire line of non-hazardous LFP PHI batteries have been successfully integrated with Schneider Electric inverters worldwide for nearly a decade in a diverse range of on- and off-grid residential, commercial and microgrid applications.

SimpliPhi also offers its all-in-one AccESS Energy Storage System featuring 3 or 4 PHI 3.8 kWh batteries with the Conext™ XW+, with both AC Coupled or DC Coupled options, prewired in a NEMA-3R-rated cabinet. The Rule 21 compliant AccESS with Schneider Electric is ideal for backup power, TOU, peak-shaving, and self-consumption of solar, and UPS functions.

PHI Battery Product Features

- Up to 100% DoD and 98% efficiency
- 10-year, 10,000-cycle warranty
- LFP battery chemistry free of cobalt hazards — no risk of overheating, fire, fumes or off-gassing
- No thermal monitoring, fire suppression, cooling or ventilation equipment required
- Indoor and outdoor use in all climates
- Modular and scalable
- Can install in small or unique spaces
- Full range of capacity and voltage options

SimpliPhi Power designs and manufactures efficient, non-toxic and enduring energy storage and management systems that utilize lithium ferro phosphate (LFP) battery chemistry. Based in Oxnard, California, SimpliPhi combines the nonhazardous LFP chemistry with its proprietary cell and battery architecture, power electronics, Battery Management System (BMS) and manufacturing processes to create safe, reliable, durable and highly scalable on-demand power solutions for residential, commercial and emergency response applications. Integral to all SimpliPhi solutions is a proprietary management system that further optimizes the lifecycle, efficiency, overall performance and durability of its batteries. SimpliPhi storage system components are UL certified and have been rigorously tested and passed requirements by the U.S. Army and Marine Corps.

Website
simpliphipower.com/

Contact
sales@simpliphipower.com

This page in no way constitutes an endorsement, express or implied, of any product, service, or company.
The village is now able to access to electricity 24 hours from our Minigrid - where they used to have only 4 hours per day.

I would like to thank Schneider Electric for their supports and commitments throughout the project.”

— Barani Aung, Managing Director of Techno-Hill Engineering

Learn more at SEsolar.com/myanmar
Asia Pacific

Myanmar
Microgrids
Powering a remote fishing and farming village in Kenti island
Solution: microgrid solution using six XW+ inverter / chargers with 14 MPPT 60 charge controllers that are connected to 288,000 Ah battery bank.
Learn more at SEsolar.com/myanmar

Indonesia
Off-grid DC-coupled systems
Electrification of 60 remote villages across Indonesian islands
Solution: off-grid DC-coupled solar systems range in capacity from 15kW to 75kW, using XW+ inverters and MPPT 60 charge controllers.
Learn more at SEsolar.com/indonesia

Australia
Battery storage solution

Philippines
Telecom Tower

New Zealand
Residential off-grid
Portable all-in-one energy supply alternatives in New Zealand
Solution: solar battery system using three XW+ inverters, four MPPT 80 charge controllers, and the monitoring solution. The battery bank was composed of eight Li-ion batteries.
Learn more at SEsolar.com/new-zealand
Europe, Middle East and Africa

- **Spain**: Off-grid solar
- **Germany**: Commercial rooftop
- **France**: Commercial rooftop
- **UK**: Commercial rooftop
- **Finland**: Commercial rooftop
- **Ukraine**: Commercial rooftop
- **Finland**: Commercial rooftop
- **Egypt**: PV plant
- **Nigeria**: Commercial off-grid
 - 170 schools and 11 healthcare centers throughout Lagos State powered by solar
 - Solution: XW+ inverter / chargers with the online monitoring solution
 - Learn more at SEsolar.com/nigeria
- **South Africa**: Residential off-grid
 - One Everton - A South African flagship for community energy independence
 - Solution: centralized storage solution using nine XW+ inverters
 - Learn more at SEsolar.com/one-everton

Customer success stories
North and South America

- **Ontario, Canada**
 - Off-grid solar

- **California, USA**
 - Off-grid solar

- **Hawaii, USA**

- **Vermont, USA**
 - Residential off-grid
 - Homeowner in VT gains energy independence from the grid
 - Solution: multi-cluster off-grid system including XW+ inverter / chargers, MPPT 80 600 charge controllers and compatible batteries

- **Puerto Rico**
 - Microgrids
 - 100 schools are powered by Microgrids through Red Cross’s community resiliency project
 - Solution: microgrids using XW+ inverter / chargers, MPPT 60/80 charge controllers and other communication devices.
 - Learn more at SEsolar.com/red-cross

- **Argentina**
 - Microgrid
Going off-grid instead of living at edge of the grid

Community in Western Australia replaces unreliable power and costly-to-maintain overhead power lines with a local self-sufficient off-grid system.

Living at the edge of the grid, a remote community in Western Australia experienced severe power quality and uptime issues. Bush fire, a natural disaster common in the area, knocked down the poles and overhead lines, with a high cost for the local utility to restore and maintain. Thomson Solar and Schneider Electric partnered to create a solution by powering the community with a standalone off-grid system. This solution is replicable to other small and mid-size dwellings living at the edge of the grid suffering from power-quality issues and where utilities must invest a large amount to maintain the commitment of reliable power for a small customer base.

As the homeowners were electing not to reconnect to the local utility grid, the system had to meet certain operating standards. The goal was to generate electricity on-site independently of the grid, using storage to assist in operating large three-phase loads while also providing power at night and during cloudy conditions. The system was designed to provide grid autonomy, yet with no undue inconvenience for the homeowners.

This system provides the customer with energy at a fraction of the cost of replacing power poles and overhead lines. The entire system is self-contained and was deployed in a short time frame to restore power to the site. It shows that solar energy can be more cost-effective. This, in short, is the promise of standalone energy systems.

Learn more at SEsolar.com/going-off-grid

“Schneider Electric provided the equipment to drive this endeavor, having the variety of multifunctional equipment with their ability to function as one, presenting an attractive and reliable system that is easy to monitor and control.”

- Andrew Thomson, Accredited Solar Installer
The Balmoral Residential Apartments (The Balmoral) is a $23 million development located in the exclusive suburb of Mosman, Sydney, Australia, with sweeping views of the famous Sydney Harbour. The Balmoral is comprised of a luxury penthouse, sub-penthouse, and four apartments, as well as an underground garage for 17 vehicles.

From the onset, the developer of the project was faced with several challenges that required innovative solutions. The developer wanted to maximize the number of apartment units and accommodate a 17-car garage in a narrow parcel of land. The only solution was to use an automatic car stacker, which created a challenge for the grid supply.

Schneider Electric and Ecoult collaborated to develop a flexible and cost-effective battery storage solution to provide grid support during peak demand periods to this high-end residential development.

Using the UltraFlex storage solution integrated with the Schneider Electric Conext XW+ inverter, the system integrator could provide a technically-superior solution at a significantly lower cost than upgrading the existing electrical infrastructure.

Learn more at SEsolar.com/balmoral